Semux Light Core Webassembly

Documentation
Release v1.0

it bear

Aug 10, 2020

Contents:

1.1 Installation

3.1 Importantnotes

32 Typicalusage

4.1 Staticmethods
42 Classmethods

5.1 Staticmethods

52 Classmethods

7.1 Staticmethods
72 Classmethods
T3 Getters . . . v v o e e e e e e

81 Classmethods

1 Introduction

2 Terms and Definitions
3 Getting started

4 Wallet class

5 Addr class

6 NetworkType enum

7 Transaction class

8 TransactionSign class
9 TransactionType enum
Index

()

RN |

11

......................... 11
......................... 12

15

......................... 15
......................... 15

19

21

......................... 21
......................... 22
......................... 22

25

......................... 25

27

29

Semux Light Core Webassembly Documentation, Release v1.0

This project is a WebAssembly version of the Semux light core library (written in C++, based on libSodium) for the
ability to work with Semux cryptographic functions in JavaScript projects.

The project is hosted on GitHub - https://github.com/uno-labs/semux-light-core-wasm

Contents: 1

https://github.com/uno-labs/semux-light-core
https://github.com/jedisct1/libsodium
https://github.com/uno-labs/semux-light-core-wasm

Semux Light Core Webassembly Documentation, Release v1.0

2 Contents:

CHAPTER 1

Introduction

This library is essentially intended to create various web versions of the Semux light /D Wallet. They can be used both
to replace the standard wallet developed by the creators of the Semux core project, as well as for various specialized
applications (dApps) based on the Semux ecosystem.

A wallet is a tool for creating asymmetric key pairs and digital signatures for transactions in the Semux network. It
should have the following main features:

¢ Random mnemonic phrase generation;

* Creation or recovery an HD Account based on a mnemonic phrase;

e Import a private key;

* Generating a random key pair (Address);

* Deriving a sequence of key pairs (HD Addresses) for the HD Account;
* Finding derived HD Addresses in HD Account;

* Finding non-HD Addresses (imported or genearated);

* Generating a message for a transaction;

* Signing transaction messages.

In fact, a fully functional wallet must be able to perform many other functions. Such as, for example, communication
with a network node through its API to obtain information necessary for the transaction, or storing wallet data between
user sessions in a browser. The implementation of such advanced features is beyond the scope of this lightweight
library, designed to perform basic Semux-specific cryptographic operations in the JavaScript environment.

The specificity of Semux algorithms is that they use cryptography on elliptic curves Ed25519, and this is why you
can’t use standard Web Crypto API present in modern browsers. Fairly well-known libSodium library is most suitable
for implementing the algorithms used in Semux. This project makes heavy use of the libSodium.

You can read more about the HD Wallets at the following links:
* Semux Project - https://www.semux.org

* BIP-0039 - https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

https://github.com/semuxproject/semux-core
https://www.semux.org
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

Semux Light Core Webassembly Documentation, Release v1.0

BIP-0032 - https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

BIP32-Ed25519 - https://github.com/orogvany/BIP32-Ed25519-java

SLIP-0100 - https://github.com/satoshilabs/slips/blob/master/slip-0010.md

BIP-0044 - https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

1.1 Installation

To build the project, QMake and EMSCRIPTEN compiler are used. The build process is quite complicated, so the
compiled files are laid out in the assets at the release section.

Download an archive uno_semux_light_core.tar.gz from assets on release page of this project. Then unpack
the archive into your project folder.

For use it in the browser project you have to import UnoSemuxLightCoreWasm. js into your HTML page:

<secript src="UnoSemuxLightCoreWasm. js"></script>

4 Chapter 1. Introduction

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/orogvany/BIP32-Ed25519-java
https://github.com/satoshilabs/slips/blob/master/slip-0010.md
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/uno-labs/semux-light-core-wasm/releases

CHAPTER 2

Terms and Definitions

WebAssembly The WebAssembly (abbreviated Wasm) is a software technology that allows you to use code written
in C++ in the JavaScript environment.

Wallet A wallet is software that stores a set of key pairs of asymmetric cryptography and allows you to perform
transaction signing operations using them.

HD Group An Hierarchical Deterministic wallet is a wallet that allows deriving hierarchical chains of key pairs from
the initial master seed in a deterministic way.

HD Wallet The wallet that consists of several HD Groups.

HD Account An HD Account is a very specific intermediate node in the hierarchy of an HD Group (defined by the
Semux specification), from which all other key pairs are derived.

Address The term Address here means an object of the Addr () class, which is essentially a key pair.
HD Address An HD Address is one of the Addresses in the HD Group hierarchy.

non-HD Address It is single Address not associated with the HD Group. It can be obtained by importing a private
key or random generation.

Note: This library can simultaneously work with several non-HD addresses, and also with several HD Groups.

Mnemonic phrase Mnemonic phrase (or mnemonic sentence) - is a group of easy to remember words (space sepa-
rated) for the determinate generation of the master seed (and, accordingly, HD Account) for certain HD Group
in HD Wallet.

A mnemonic code or sentence is superior for human interaction compared to the handling of raw binary or
hexadecimal representations of a wallet master seed. The sentence could be written on paper or spoken over the
telephone.

Semux-address Aka “Hex address” or “Recipient address”. 1t’s a hexadecimal string that is the “official address”
of some wallet to which you can, for example, transfer a certain amount of cryptocurrency.

In fact, a Semux-address is obtained by taking a double hash (Blake2B-SHA256) from the public part of the
Address.

https://webassembly.org/

Semux Light Core Webassembly Documentation, Release v1.0

Nonce Nonce is a sequentially increasing and unique integer for the sender address. Max value is
9,223,372,036,854,775,807. Used to make transactions. If you do not know the next Nonce for a transaction,
then you can get it by contacting the Semux node APIL.

In the parameters of the methods of this library, the Nonce is passed as a string decimal representation.

6 Chapter 2. Terms and Definitions

CHAPTER 3

Getting started

3.1 Important notes

Some methods are static and can be called without creating an object. For example:

’var result = Module.UnoSemux<SomeClass>.<someStaticMethod> () ;

Other methods are members of objects of certain classes. So at first you have to create an object of certain class and
then to call its methods. In fact, in this library almost always objects are created by some factory method, e.g.:

var myObject = Module.UnoSemux<SomeClass>.<someFactoryMethod> () ;
var result = myObject.<someMethod> ();

All methods return a result object that always has two important fields - error and data:
* result.error - if exists, it contains an exception;
e result.data - contains result data.

You can check for errors in the following way:

<script>
function GetRes (aRs)
{
if (aRs.error)
{

throw aRs.error;
if (aRs.data)

return aRs.data;

}

throw 'Unknown result value: ' + JSON.stringify (aRs);
}

</script>

Semux Light Core Webassembly Documentation, Release v1.0

Warning: The methods never throw exceptions related to the logic of the library. But the system exceptions can
be thrown nonetheless!

The arguments to the methods, which are essentially integers, are passed as string values. The reason is that JavaScript
cannot work with Big Integers.

3.2 Typical usage

First of all you have to include corresponding JavaScript file into your HTML page:

<secript src="UnoSemuxLightCoreWasm. js"></script>

3.2.1 Mnemonic phrase generation

<script>
function NewMnemonicPhrase ()

{

var mnemonic_phrase = GetRes (Module.UnoSemuxWallet.new_mnemonic_pharase()) ;
console.log ("New mnemonic phrase: '" + mnemonic_phrase + "'");
}
</script>

3.2.2 Import mnemonic phrase

<script>
function ImportMnemonicPhrase ()
{

// Mnemonic phrase from previous example

var mnemonic = mnemonic_phrase;
var password = ""; // optional
console.log ("HD mnemonic phrase '" + mnemonic + "', password = '" + password + "

*}lll);

// New wallet
if (!window.semux_wallet)
{
console.log("Creating a new wallet");
window.semux_wallet = GetRes (Module.UnoSemuxWallet.new_wallet());

// New HD Group from mnemonic phrase (we can add multiple HD groups, each will_,
—~have unique ID)

console.log("Creating a new HD group...");

window.semux_hdGroupId = GetRes (window.semux_wallet.add_hd_group (mnemonic,
—password)) ;

console.log("New HD group ID = " + window.semux_hdGroupId);

// New HD Address from HD group

console.log("Creating a new HD Addreess from HD Group...");

var hdAddr = GetRes (window.semux_wallet.generate_next_hd_address (window.semux_
—hdGroupId));

(continues on next page)

8 Chapter 3. Getting started

Semux Light Core Webassembly Documentation, Release v1.0

(continued from previous page)

var addrStrHex = GetRes (hdAddr.address());
console.log ("New address: " + "0Ox" + addrStrHex);

}

</script>

3.2.3 Transaction signature

<script>
function SignTransaction ()
{
// We will assume that the required data is contained in the corresponding,
—~fields of the web form
var addressStrHex = document.getElementById("hd_ address_source") .value;
console.log("Get HD Address from wallet by Semux Address ...");
var hdAddr = GetRes (window.semux_wallet.find_address (addressStrHex));

console.log ("New transaction...");

var d = new Date();

var network = document .getElementById("transaction_network_source") .value;
var type = document.getElementById ("transaction_type_source") .value;
var to = document.getElementById ("transaction_to_source") .value;

var value = document .getElementById("transaction_value_source") .value;
var fee = document.getElementById ("transaction_fee_source") .value;

var nonce = document.getElementById ("transaction_nonce_source") .value;
var data = document .getElementById("transaction_data_source") .value;
var gas = document.getElementById ("transaction_gas_source") .value;

var gas_price = document.getElementById("transaction_gas_price_source") .value;

// Network type

var network_type = Module.UnoSemuxNetworkType.TESTNET;

if (network == "MAINNET") network_type = Module.UnoSemuxNetworkType.MAINNET;
else network_type = Module.UnoSemuxNetworkType.TESTNET;

// Transaction type
var transaction_type = Module.UnoSemuxTransactionType.COINBASE;

if (type == "TRANSFER") transaction_type = Module.UnoSemuxTransactionType.
—TRANSFER;

else if (type == "DELEGATE") transaction_type = Module.UnoSemuxTransactionType.
—DELEGATE;

else if (type == "VOTE") transaction_type = Module.UnoSemuxTransactionType.VOTE;

else if (type == "UNVOTE") transaction_type = Module.UnoSemuxTransactionType.
—UNVOTE;

else if (type == "CREATE") transaction_type = Module.UnoSemuxTransactionType.
,CREATE;

else if (type == "CALL") transaction_type = Module.UnoSemuxTransactionType.CALL;

var transaction = GetRes (Module.UnoSemuxTransaction.new_transaction (
network_type,
transaction_type,
String(to),
String(value),
String (fee),
String (nonce),

(continues on next page)

3.2. Typical usage 9

Semux Light Core Webassembly Documentation, Release v1.0

(continued from previous page)

d.getTime()),
data),

gas),
gas_price)

String

String

String

String
))i

console.log("Sign transaction...");

var transaction_sign = GetRes (hdAddr.sign_transaction (transaction));

var transaction_hash = GetRes (transaction_sign.hash());
console.log("Transaction hash '" + transaction_hash +
var transaction_sign_hex_encoded = GetRes (transaction_sign.encode());
console.log("Transaction sign hex str '" + transaction_sign_hex_encoded + "'");
}
</script>

10

Chapter 3. Getting started

CHAPTER 4

Wallet class

class Wallet ()
An object of this class is not created using the new operator, but is returned by the static factory method
new_wallet ().

4.1 Static methods

new_mnemonic_phrase ()

Returns A string containing generated Mnemonic phrase.

Generates a new mnemonic phrase.

Example:
var mnemonic_phrase = GetRes (Module.UnoSemuxWallet.new_mnemonic_pharase());
console.log ("New mnemonic phrase '" + mnemonic_phrase + "'");

new_wallet ()

Returns An object of wallet () class.

Factory static method to create a new object of Wallet class.
Example:

if (!window.semux_wallet)

{

console.log("New wallet");

(continues on next page)

11

Semux Light Core Webassembly Documentation, Release v1.0

(continued from previous page)

window.semux_wallet = GetRes (Module.UnoSemuxWallet.new_wallet ());

4.2 Class methods

add_hd_group (mnemonic, password)
Arguments
* mnemonic (String)— A mnemonic phrase to import from.
* password (String)— An optional password for mnemonic import.

Returns sInt64 anew Group ID.

Method for creating a new HD Group in the HD Wallet.
Further, the returned ID is used for operations with HD Address es.

var semux_hdGroupId = GetRes (window.semux_wallet.add_hd_group (mnemonic,
—password)) ;
console.log("New HD group ID = " + semux_hdGroupId);

delete_hd_group (grouplD)
Arguments

* groupID (String)— The HD Group ID to delete from the HD Wallet.

Method for deletion the HD Group by given grouplD.

generate_next_hd_address (grouplD)
Arguments
* grouplID (String)— The ID of the HD Group, that is used to get the next HD Address.

Returns An object of Addr () class.

Method for deriving the next HD Address for the HD Group by given groupID parameter.
Example:

var hdAddr = GetRes (window.semux_wallet.generate_next_hd_address (semux_
—hdGroupId)) ;

generate_random_address ()

Returns An object of Addr () class.

12 Chapter 4. Wallet class

Semux Light Core Webassembly Documentation, Release v1.0

Method for generating a random Address not associated with any HD Group.

delete_address (hexAddress)
Arguments

* hexAddress (String) — The Semux-address representation of Address to delete from
the Wallet.

Method for deletion the Address from the Wallet by given Semux-address.

find_address (hexAddress)
Arguments

* hexAddress (String) — The Semux-address representation of Address to find in the
Wallet.

Returns An object of Addr () class.

Method for finding and getting the object of Addr () class in the Wallet by given Semux-address.

4.2. Class methods 13

Semux Light Core Webassembly Documentation, Release v1.0

14 Chapter 4. Wallet class

CHAPTER B

Addr class

class Addr ()
This class is designed to work with a specific key pair (not with an HD wallet or an HD Group).

5.1 Static methods

The class has no static methods.

5.2 Class methods

address ()

Returns A string containing a Semux-address (without leading ‘0x’).

Method to get a HEX representation of itself (aka Semux-address).
Example:

//New HD address from HD group

var hdAddr = GetRes (window.semux_wallet.generate_next_hd_address (semux_
—hdGroupId)) ;

var addrStrHex = GetRes (hdAddr.address());

console.log("New address: " + "0Ox" + addrStrHex);

sign_transaction (transaction)
Arguments
* transaction — Anobject of Transaction () class.

Returns An object of TransactionSign () class.

15

Semux Light Core Webassembly Documentation, Release v1.0

Performs a signature of a Transaction () object.
Example:

var transaction = GetRes (Module.UnoSemuxTransaction.new_transaction (
network_type,
transaction_type,
String(to),
String(value),
String (fee),
String(nonce),
String(d.getTime()),
String(data),
String(gas),
String(gas_price)

))i

console.log("Sign transaction...");
var transaction_sign = GetRes (hdAddr.sign_transaction (transaction));

var transaction_hash = GetRes (transaction_sign.hash());

console.log("Transaction hash '" + transaction_hash + "'");

var transaction_sign_hex_encoded = GetRes (transaction_sign.encode());

console.log("Transaction sign hex str '" + transaction_sign_hex_encoded + "'");
nonce ()

Returns A string containing the current Nonce (string representation of SINT64 - max value is
9,223,372,036,854,775,807).

Method to get the current Nonce, which was set by set__nonce () method or was incremented by
inc_nonce () method.

set_nonce (nonce)
Arguments
* nonce (string)— A string representation of Nonce to set.
Returns void.

Set the Nonce for this Address.

inc_nonce ()

Returns A string containing the incremented Nonce.

Method to increment the current Nonce.

private_key ()

16 Chapter 5. Addr class

Semux Light Core Webassembly Documentation, Release v1.0

Returns A string HEX representation of the private key part of this Address.

Method to get the HEX representation of the private key part of this Address.

name ()

Returns A string containing the name of this Address if any name was set by set_name ()
method.

Method to set recognizable name to this Address.
set_name (name)
Arguments
* name (string)— Any recognizable name to assign to this Address.

Returns void.

Set any recognizable name for this Address.

5.2. Class methods 17

Semux Light Core Webassembly Documentation, Release v1.0

18 Chapter 5. Addr class

CHAPTER O

NetworkType enum

The following constants are used to indicate the type of network:
Module.UnoSemuxNetworkType . MAINNET
Module.UnoSemuxNetworkType.TESTNET

Module.UnoSemuxNetworkType .DEVNET

These constants are used when creating a Transaction () object.

19

Semux Light Core Webassembly Documentation, Release v1.0

20 Chapter 6. NetworkType enum

CHAPTER /

Transaction class

class Transaction|()
An object of Transaction () class is created with factory static method new_transaction () and con-
tains all necessary transaction parameters.

7.1 Static methods

new_transaction (networkType, transactionType, addressToHex, amount, fee, nonce, timestamp, dataHex,
gas, gasPrice)

Arguments
* networkType (NetworkType) — A type of network.
* transactionType (TransactionType) — A type of transaction.
* addressToHex (string) — Semux-address in string hexadecimal form.
* amount (string)— Amount of payment (integer value in nanosem).
* fee (string)— Amount of fee (integer value in nanosem).
* nonce (string)— A Nonce (unique and sequential for the sender).
* timestamp (string)— A timestamp of the transaction (in milliseconds).
* dataHex (string)— Some arbitrary text data in string hexadecimal form.
* gas (string)— Amount of gas.
* gasPrice (string)— Gas price (integer value in nanosem).

Returns object of Transaction () class.

Factory method for creating of Transaction () class object.
Example:

21

Semux Light Core Webassembly Documentation, Release v1.0

var d = new Date();
var network_type = Module.UnoSemuxNetworkType.TESTNET;
var transaction_type = Module.UnoSemuxTransactionType.TRANSFER;

var transaction = GetRes (Module.UnoSemuxTransaction.new_transaction (
network_type,
transaction_type,
String(to),
String(value),
String(fee),
String (nonce),
String(d.getTime()),
String(data),
String(gas),
String(gas_price)

))i

var transaction_sign = GetRes (hdAddr.sign_transaction (transaction));

var transaction_hash = GetRes (transaction_sign.hash());

console.log("Transaction hash '" + transaction_hash + "'");
var transaction_sign_hex_encoded = GetRes (transaction_sign.encode());
console.log("Transaction sign hex str '" + transaction_sign_hex_encoded +

var to = "0x82c38263217817de2ef28937c7747716eble7228";

var data = "0x756E6F2D6C616273206C696768742077616C6C65742064656D6F"; // "uno-labs,_,
—light wallet demo" in hex form

var value = "100000000"; // nanosem

var fee = "5000000"; // nanosem

var nonce = "533"; // Actually, you have to get it from Node API

var gas = "0";

var gas_price = "0"; // nanosem

"lll);

7.2 Class methods

encode ()

Returns An encoded string of Transaction () object.

Method to get an encoded representation of itself.

7.3 Getters

There are also some “getters” methods in the class:
* network_type()
* transaction_type()
e address_to()
¢ value()

e fee()

22 Chapter 7. Transaction class

Semux Light Core Webassembly Documentation, Release v1.0

* nonce()

* timestamp()
e data()

* gas()

 gas_price()

7.3. Getters 23

Semux Light Core Webassembly Documentation, Release v1.0

24 Chapter 7. Transaction class

CHAPTER 8

TransactionSign class

class TransactionSign ()
An object of this class is not created using the new operator, but is returned by the sign_transaction ()
method of Addr () object.

Actually, the TransactionSign () objects are storage for the following data:
¢ encoded transaction data;
e a transaction hash (Blake2B);
¢ asign of hash;

* the public key (with no prefix) of the key pair with which the signature was made.

8.1 Class methods

data ()

Returns A string containing encoded transaction data.

Method to get encoded transaction data.

hash ()

Returns A string containing a hash (Blake2B) of the transaction data.

Method to get a hash of the transaction data.

sign ()

Returns A string containing a sign of the transaction data hash.

25

Semux Light Core Webassembly Documentation, Release v1.0

Method to get a sign of the transaction data hash.

public_key ()

Returns A string containing the public key.

Method to get the public key (with no prefix) of the key pair with which the signature was made.

encode ()

Returns A string containing encoded TransactionSign () object.

Encode all data contained in this object in order to prepare before sending to the Semux network.
Example:

var transaction_sign = GetRes (hdAddr.sign_transaction (transaction));

var transaction_hash = GetRes (transaction_sign.hash());
console.log("Transaction hash '" + transaction_hash + "'");

var transaction_sign_hex_encoded GetRes (transaction_sign.encode());
console.log("Transaction sign hex str '" + transaction_sign_hex_encoded + "'");

26 Chapter 8. TransactionSign class

CHAPTER 9

TransactionType enum

The following constants are used to indicate the type of transaction:

Module.
Module.
Module.
Module.
Module.
Module.

Module.

These constants are used when creating a Transaction () object.

UnoSemuxTransactionType.
UnoSemuxTransactionType.
UnoSemuxTransactionType.
UnoSemuxTransactionType
UnoSemuxTransactionType.
UnoSemuxTransactionType.

UnoSemuxTransactionType.

COINBASE
TRANSFER

DELEGATE

.VOTE

UNVOTE
CREATE

CALL

27

Semux Light Core Webassembly Documentation, Release v1.0

28 Chapter 9. TransactionType enum

Index

A

Addr () (class), 15
Address, 5

Fl

HD Account,$5
HD Address,5
HD Group, S

HD Wallet,5

M

Mnemonic phrase,5
Module.UnoSemuxNetworkType.DEVNET (global
variable or constant), 19
Module.UnoSemuxNetworkType .MAINNET
(global variable or constant), 19
Module.UnoSemuxNetworkType.TESTNET
(global variable or constant), 19
Module.UnoSemuxTransactionType.CALL
(global variable or constant), 277
Module.UnoSemuxTransactionType.COINBASE
(global variable or constant), 27
Module.UnoSemuxTransactionType.CREATE
(global variable or constant), 27
Module.UnoSemuxTransactionType.DELEGATE
(global variable or constant), 27
Module.UnoSemuxTransactionType.TRANSFER
(global variable or constant), 27
Module.UnoSemuxTransactionType.UNVOTE
(global variable or constant), 27
Module.UnoSemuxTransactionType.VOTE
(global variable or constant), 27

N

non-HD Address,5
Nonce, 6

S

Semux—-address, 5

T

Transaction () (class), 21
TransactionSign () (class), 25

W

Wallet, 5
Wallet () (class), 11
WebAssembly, 5

29

	Introduction
	Installation

	Terms and Definitions
	Getting started
	Important notes
	Typical usage

	Wallet class
	Static methods
	Class methods

	Addr class
	Static methods
	Class methods

	NetworkType enum
	Transaction class
	Static methods
	Class methods
	Getters

	TransactionSign class
	Class methods

	TransactionType enum
	Index

